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NUMERICAL COMPUTATION OF SENSITIVITIES AND THE ADJOINT APPROACH

ROBERT MICHAEL LEWIS *

Abstract. We discuss the numerical computation of sensitivities via the adjoint approach in optimization

problems governed by differential equations. We focus on the adjoint problem in its weak form. Wc show how

one can avoid some of the problems with the adjoint approach, such as deriving suitable boundary conditions

for the adjoint equation. We discuss the convergence of numerical approximations of the costate computed

via the weak form of the adjoint problem and show the significance for the discrete adjoint problem.

Key words. Adjoint approach, costatc, sensitivities.

Subject classification. Applied and Numerical Mathematics

1. Introduction. In this paper we discuss the numerical computation of sensitivities via the adjoint

approach in optimization problems governed by differential equations. Wc focus on the weak form of the

adjoint problem. The weak form of the adjoint problem allows one to finesse the issue of identifying the

adjoint problem as a conventional boundary-value, initial-value, or initial-boundary-value problcm. We also

discuss how one can usc the weak form of the adjoint problem to compute numerical approximations of the

costate and relate this approach to the discrete adjoint problem.

The context for this discussion is the nonlinear programming problem

(1.1)
minimize F(a) = f(a, u(a))

subject to C(a) = c(a,u(a)) >_ O,

where u(a) is the solution of some set of differential equations,

(1.2) s(a, u(a)) = 0.

We will refer to a as the design variable and u as the state variable. For simplicity, we restrict our attention

to the question of computing derivatives associated with the objective F(a) and ignore the constraints C(a).

The adjoint approach [3, 11, 14] allows one to compute the derivative F'(a) of F(a) with respect to a in

a very efficient manner. The primary cost in computing F'(a) via the adjoint approach is the calculation of

an intermediate quantity A, called the costate or adjoint state, as the solution of the adjoint problem, which

is a linear problem associated with the governing equation (1.2).

However, the adjoint approach is not without attendant difficulties. These difficulties are particularly

associated with the calculation of the intermediate quantity _. One problem that arises is that of determining

the appropriate adjoint problem. It is not always the case that one can casily identify the adjoint problem as

some manner of conventional initial-value, boundary-value, or initial-boundary-value problem. Objectives in

optimization problems for which one cannot identify the appropriate adjoint problem in a straightforward

way are sometimes called "inadmissible."
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The problem of inadmissibility is reported, for instance, in [2, 6], where the authors conclude that only

certain objectives are admissible in aerodynamic optimization problems. The difficulty with the "inadmis-

sible" cost functionals encountered by these authors stems from the absence of suitable boundary terms to

cancel terms that appear duc to the choice of cost functional. Another question associated with the adjoint

approach is that of the convergence of numerical approximations of the costate A. Finally, from the point

of view of numerical optimization, there is the paramount question of the approximation of the derivative

F'(a) and the convergence of such approximations under refinement of the discretization of (1.1) (1.2).

We discuss how studying the adjoint problem in its weak form gives us one way to address these issues.

The weak form of the adjoint problem is based on the identity of the costate A as a linear functional.

The wcak form of the adjoint problem always exists, which allows us to resolve the problem of "inad-

missibility." Furthermore, we can solve the weak form of the adjoint problem numerically and can derive

convergence estimates for A that depend on the convergence estimates for the solution of the forward problem

(1.2). While the approximations of A may converge in a very weak sense, the ensuing convergence estimates

for A nevertheless enable us to derive useful convergence estimates for approximations of the derivative Ft(a).

Wc also relate the numerical approximation of the weak form of the adjoint problem to the adjoint of the

discretized problem.

2. Issues in the numerical calculation of sensitivities. We begin with a discussion of some of

the issues in the numerical calculation of sensitivities for optimization problems governed by differential

equations.

2.1. Consistency of sensitivity calculations. Wc assume that the discretization of u (and possibly

a) is parameterized by h, where the discretization is refined as h ---* 0. There are two senses of consistency

for numerical approximations of sensitivities for the problem (1.1) (1.2).

Consistency with the infinite-dimensional problem. As the discretization is refined, the approximation

Ah of the costate and the approximation F_ (a) of the derivative should converge in a suitable sense to the

correct quantities. One would also hope for estimates of the rate of convergence.

Consistency with the finite-dimensional computational problem. At any level of discretization h, the ap-

proximation of the derivative F'(a) should correspond to the derivative of the finite-dimensional optimization

problem obtained by discretizing (1.1) (1.2) at level h.

The necessity of the first sense of consistency is clear; if the numerical scheme is to make sense then it

should converge under refinement of the discretization. The necessity of the second sense of consistency is

subject to debate. One could, for instance, derive the adjoint problem and discretize it in a manner indepen-

dent of the discretization of (1.1) (1.2). Asymptotically the sensitivities derived by these two approaches will

bc consistent (provided both arc consistent with the infinite-dimensional problem), which might lead one to

conclude that consistency of derivatives with the discretized optimization problem is unnecessary. However,

inconsistencies at the discrete level may cause an optimization algorithm applied to the discretized version

of the optimization problem to terminate prematurely.

This is not so much an issue in the case of unconstrained optimization. For instance, consider the situa-

tion in Fig. 2.1, in which a E/R 2 is the current value of the design variables, and -g(a) is an approximation

to the negative gradient -VF(a) at a. In the case of unconstrained minimization, -g(a) is well within the

cone of descent directions for F and is a reasonable approximation of -VF(a). The analysis in [5] of the

use of inexact gradient information in trust region methods for unconstrained minimization indicates that

optimization algorithms for unconstrained minimization are surprisingly insensitive to such errors.
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FIG. 2.1. Acceptability of errors in the derivative in the unconstrained case.

However, the situation changes if we add even the simplest of constraints. Consider the previous situation

with the addition of two bound constraints that arc binding at a, as depicted in Fig. 2.2. In this picture

f_

N_(a) -g(a)

-rE(a)

FIC. 2.2. Unacceptability of errors in the derivative in the constrained case.

the feasible region is denoted by ft. Now the approximation -g(a) lies in the normal cone of f2 at a, Nn(a).

This would lead us to the erroneous conclusion that a is a Karush-Kuhn-T_cker point (i.e., a constrained

stationary point), since it appears that at a we cannot improve F locally without violating the constraints.

In the constrained problem, the cone of feasible descent directions is not dctcrmined just by -VF(a) but

also by the constraint geometry, and in general this cone is much smaller than in the case of unconstrained

minimization. As a consequence, in constrained optimization even small errors in the derivative can lead to

problems.

Thus small errors in thc gradient can lead to serious problems in the application of optimization al-

gorithms. Consistency of the numerical approximations of sensitivities with the discrctized optimization

problem is one step to reducing the presence of such errors. From a practical point of view, moreover,

consistency of derivatives with the discretized problem makes it easier to check the correctness of their

implementation.

In the case the finite-dimensional computational problem, the desired sense of consistency is clear:

sensitivities should bc numerically consistent (i.e., consistent to the extent allowed by the limitations of

machine precision). Consistency with the infinite-dimensional problem, that is, the sense in which Ah and

F_(a) should converge to _ and F'(a), is more subtle.

Both )_ and Ft(a) are linear functionals; let CA, v) denote the value obtained by applying the linear

functional )_ to the vector v. One typically posits that the action of _ can be expressed as

v) = f _(x)v(x)(2.1) (_,

where )_(x) is a function sufficiently smooth to permit integration by parts against the linearization of the

state equation (1.2). One then attempts to to identify )_ as the solution of an adjoint differential equation.



If thiscanbedone,onecanthenapplytheconvergenceanalysisof the schemes for the solution of this

differential equation to obtain estimates of the convergence of an approximation Ah to A. However, there is

a problem with this approach. An arbitrary numcrical scheme for discretizing the adjoint equation will not

necessarily be numerically consistent with the discretized problem. Wc will return to this point in §4.1.

2.2. Deriving the adjoint problem. Moreover, it is not always thc case that wc can write A in the

form (2.1). A related problem is that of "inadmissible" objectives, mentioned in the introduction, where one

cannot identify A as the solution of a differential equation. The following example illustrates both points.

For a E/R, lct

u'(x) = a x•(0,1)

u(0) = 0

and define F(a) = u'(1); note that F(a) = a. If we try to apply the adjoint method in the usual way to

compute F'(a), beginning with (2.1) and integrating by parts, we obtain

/0' /0A(x)u'(x) = A(1)u(1) - A'(x)u(x) = u'(1).

for all u • C 1[0, 1], say. Now we are stuck; if we require A to satisfy the adjoint ODE -A'(x) = 0 for

x • (0, 1) we obtain the requirement

A(1)u(1)=u'(1),

for all u • CI[0, 1] and no choice for the terminal condition A(1) will insure this. The problem is that

)_ -- _P(1) and this is supported at x -- 1, where we also need to impose a terminal condition for A, which

makes A over-determined at x -- 1. Also note that A is not a function, so the assumption (2.1) is not, strictly

speaking, justified. On the other hand, the objective F(a) -- a is unequivocally a differentiable function of

a single real variable, so any obstruction must bc illusory.

2.3. Representation of linear functionals and directions of steepest descent. Related to the

question of convergence of numerical approximations to A and F_(a) is the question of just what such

approximations are converging to. In a very real sense, linear functionals such as F_(a) and A havc no

intrinsic identity other than their values when applied to their arguments.

Consider, for instance, the familiar _-functional defined on the Sobolev space H 1[-1, 1] by (5, u) = u(0),

This functional is bounded on HI[-1, 1]. We can represent the action of 5 in many different ways. For

instance, we can write $ as the limit of the sequence

(2.2) 5k (x) = kXk (x),

where Xk is the characteristic function of the interval [-1/2k, 1/2k]:

95k(x)u(x)dx.

We can also represent 5 as integration against a measure # defined by

= o ¢
#(fl)

L 1 xE_2



Then

1

((i, u) = f_ u(x)d#(x).
1

Furthermore, since (i is a bounded linear functional on HI[-1, 1], the Riesz representation theorem [9]

guarantees the existence of w c Hi[-1, 1] such that in the H 1 inner product (., -)g 1,

((i, u) = (w, u)H,c-l,ll = w(x)u(x) +
1

I e- x _ e2e •

(2.3) w(x) = 1 < < o
e x _ e2e-x

2(1 + e 2) 0 < x < 1

Thus we see that (i has no intrinsic identity save ((i, u) = u(0). While (i can bc represented by the

reasonable function w(x) in (2.3), (f can also be viewed as the limit of the sequence in (2.2), which is not

convergent in L 2 and pointwise is converging to zero almost everywhere.

Given that it is not clear what it means to "look at" _ and F'(a) as linear functionals, how then are

these quantities to bc interpreted? The notion of a direction of steepest provides one answer to this question.

The direction of steepest descent for F with respect to the norm I] " tlx is a solution of

(2.4) minimize (F'(a), p)
subjcct to [[p I]x < 1,

provided a solution exists. Notc that this direction dcpcnds on the choice of norm; the direction of steepest

descent tells us the direction that infinitesimally yiclds the greatest dccrease in F per unit distance, and

distance depends on thc choice of norm. Since the direction of stecpcst desccnt is a direction in X, it gives

us something meaningful to examine (e.g., actually plot). We would replace F'(a) by A in (2.4) if A were the

functional of interest.

Since directions of steepest descent are directions in the design space, they can be used in optimization

algorithms. For instance, in the usual adjoint approach, one hopes to obtain a representation of the form

(F'(a), p) = fgp

for g c L 2. The Cauchy-Schwarz inequality then says that g defines the direction of steepest descent with

rcspect to the L 2 norm.

On the other hand, there is no L 2 direction of steepest descent for the (f-functional becausc 5 is not

bounded on L 2. At the same time, thc representer w of (i in the H 1 inner product given in (2.3) dcfines

(again by the Cauchy-Schwarz inequality) the direction of steepest descent for (i in thc H 1 norm. The

computation of directions of stecpest descent in the H k norm is discussed in [10].

2.4. Further remarks on the representation of the costate. Actually, the assumption that )_ can

be written in the form (2.1) is, in general, almost true in a sense we can make precise. This observation

depends on the density of functionals of the form (2.1) in the negative norm Sobolev spaces [1, 13] and other

spaces. We will use this observation in §4.1 in connection with numerical schemes for computing )_.

The Riesz representation theorem allows us to identify H k with its dual (i.e., the space of bounded linear

functionals on Hk): given any linear functional _ on H k we can find w C H k for which (_, u) = (w, U)Hk for

In this case one can check that



all u 6 H k. The negative norm space H -k is an alternative representation of the dual of H k. For w 6 L 2,

the negative Sobolcv norm is defined to be

r
II_ tlHk=1

The negative norm Sobolev space H -k is defined to be the completion of L 2 with respect to this norm.

This means that functionals of the form (2.1) are dense in H -k, so if A 6 H -k then A can be approximated

arbitrarily well (in H -k norm) by functionals of the form (2.1). Functionals of the form (2.1) are dense in

many other dual spaces, as well, such as (ck) '. Thus we should not bc surprised that the assumption (2.1)

turns out to bc correct as often as it does. On the other hand, thc examples of the previous sections show

that A need not have such a representation.

3. The weak form of the adjoint problem. We now turn from these general questions concerning

the calculation of sensitivities to the adjoint problem in its weak form. Wc give two derivations of the weak

form of the adjoint problem. The first is based on implicit differentiation, while the second is based on the

variation of the Lagrangian.

We assume that a 6 X, u 6 U, and S : (a, u) 6 X > U _-+S(a, u) 6 V, where X, U, V arc Banach spaces.

We also assume that f is differentiable on X x U, and that given (a, u) for which S(a, u) = 0 (i.e., u solves

(1.2)), the partial Fr4chet derivative of S with respect to u, S_(a, u), is boundedly invertible as a map from
Uto V.

We denote by X', U', and V' the dual spaces of X, U, V (i.e., the spaces of bounded linear functionals on

X, U, V). We denote the adjoint [9] of a bounded linear operator A by A × ; if A : Y --+ Z, thcn A × : Z' -+ Y'

is defined by (A×z ', y)y = (z', Ay)z for all v' 6 V'.

3.1. Derivation via implicit differentiation. Under the preceding hypotheses, the classical implicit

function theorem [8] assures us that S(a, u(a)) = 0 defines u(a) as a smooth function of a and that the

derivative of u(a) with respect to a is

(3.1) du (a)

This formula forthe Jaeobian of u with respectto a isformallyjustthe resultofapplying implicitdifferen-

tiationto S(a,u(a)) = O. The derivativeofF isthen

du

(3.2) F'(a) = Ia + Iu_a (a,_(a)) ----fa - IuS_lSa (a,u(a))"

At this point the costate A 6 V' appears. Define

(3.3) A -1"= -f_S, ,

then F'(a) = fa + ASa, where the right-hand side is evaluated at (a, u(a)).

Next we derive the weak form of the adjoint problem and make clear the role adjointness plays. From

(3.3), A 6 V' satisfies

(3.4) .)v = - ")u,

for all v 6 U. However, by definition

(3.5) v>u= =



SO

(3.6) A = -- (Su) -× f,,.

Note that S_ TM : f_ E U' ---* (S_) -× fu E V'.

From (3.4) and (3.5) we obtain

(3.7) (A, S,,V)V=- (f,,,V)u

for all v C U. This relation wc call the weak form of the adjoint problem since it defines A only through the

action of A as a linear functional on vectors in its domain.

The weak form of the adjoint problem always exists and is a distributional differential equation. Any

boundary conditions are implicit. Such equations are discussed in [12], for instance. There remains the

question of relating the weak form of the adjoint problem to a conventional differential equation. As we

have noted before, usually one can identify an adjoint differential equation (and boundary conditions) that

is equivalent to (3.7); however, we have also seen that this not always the case. The interpretation of

distributional differential equations in terms of conventional differential equations arises more generally

in the solution of differential equations with distributional data and is not always possible [12]. On the

other hand, the weak form of the adjoint problem always exists, avoiding the problem of "inadmissibility"

mentioned previously.

We can relate these formulae to F'(a), beginning with (3.2). Given _ E X,

(F'(a), _l)x: (fa + f,,_aa, _)x

=(1, fa_?)_+ fu, _aar/ =<fXl' *?)x+ daa f_'' _ "
U X

or just

du ×

(3.8) F'(a) = fax 1 + -_a fu.

From (3.1) we obtain

du ×
(3.9) d--a f_ = -Sx (Su)-x fu.

Then (3.6), (3.8), and (3.9) yield

(3.10) F'(a) = fax1- Sxa (S,,) -x f_ ---- faXl + SaXA.

In the finite-dimensional case the first identity in (3.10) corresponds to transposing (3.2) to obtain VF(a) =

Vaf - sT suTvuf .

3.2. Derivation via variation of the Lagrangian. We can also derive the weak form of the adjoint

problem by examining the variation of the Lagrangian due to variations in a. This approach, another form

of the calculations of the preceding section, begins with the Lagrangian L(a, u; A) = f(a, u) + (A, S(a, u)).

One typically assumes that the action of the linear functional ), can be represented as an integral of the

form (2.1), but as discussed in §2 this may not be justified. For that reason we adhere to the abstract

representation (A, S(a, u)) for the action of A on the equation residual S(a, u).



Thc cffcct 5L of a variation 5a on the Lagrangian L is given by

_L : 5f + <._,_s> = A_a + f_u + <),, so_a + S_u),

where to first-order the perturbation 6u in u due to the perturbation 5a satisfies Saha+Suhu = 0. Rearranging

terms we have

If we require A to satisfy

(3.11)

5L = ASa + (A, Saga) + f,,Su + (A, S,,_u> .

f,,au + (,_, S,_,iu) = o

for all perturbations 5u, then F'(a)ga = faga + CA, Saha) for all ha, which determines F'(a).

Typically one insures that (3.11) holds for all 5u by starting with the representation (2.1) for the action

of A and applying integration by parts to dcrivc an adjoint problem independent of 5u, which, if solved by

A, implies that (3.11) holds for all 5u. However, as noted previously the assumption that the action of A

can be written in the form (2.1) for some suitablc function A(x) is not always justified. This explains some

of the difficulties with "inadmissible" objcctives that have been reported - the costate A in those problems

does not have the hypothesized form (2.1), and the adjoint method reaches an impasse.

On the other hand, if we take as thc definition of the adjoint problem the weak formulation (3.11)

(which is equivalent to (3.7)), wc can avoid these problems sincc we do not presume a priori any particular

representation for the action of A. Moreover, this definition via duality sheds light on the convergence of

numerical schemcs for the approximation of A and F'(a), as we discuss in the next section.

4. Convergence of numerical schemes for the solution of the weak form of the adjoint

equation. First we discuss how suitable numerical solutions ,_h of the weak form of the adjoint problem

converge to A, establishing consistency with the infinite-dimensional problem. Wc then give a concrete

example of such a scheme that is also consistent with the finite-dimensional optimization problem.

Let L = S_. Wc assume that for any v wc can solve thc linearized problcm Lw = v and that we

approximate solutions w by w h 6 U h, where h is a discrctization parameter and U h is an approximating

space.

In the discretization of the adjoint problem, wc require that )_h satisfy

Lwh>= <12,wh>

forallw h E U h. This definesthe actionofAh on the range V h of U h under L. There remains the definition

of Ah on the complement of V h,which we do as follows.For v E V, letw h be the approximate solutionof

Lw = v at the discretizationlevelh. Then we require

v>= <:_,

This agrees with the preceding definition of Ah on V h. Moreover,

so we have the adjointGalerkin condition:

(4.1) (A h, Lw - Lwh> = 0



for allw, w h.

Given v E V, wc can find w E U for which Lw -- v. Then

: <_,L_- L_> +<_-_, L_> +<_,L__-L_>

: <s_,_- _> +<I_-s_,_> + <_,L__-L_>.

Applying (4.1) reduces this to

(4.2) <:_-_, _>: <:_,w- w_>+<:_-:_,w_>.

This is the basic identity for approximating the error t - Ah; we will give examples of its use in §5.

From this discussion we see that the error in the approximation of A is governed by how well we approx-

imatc f_ and by the rate of convergence of w h to w for solutions of Lw = v. Approximation of f_ is not

trivial: unless f is linear in u, fu will involve the solution of the forward problem (1.2). Wc will also see in

§5 that the sense in which w h must approximate w need not be as strong as the norm on U.

These estimates guarantee convergence in what might be only a very weak norm, such as a negative

Sobolev norm; this sensc of convergence may be odd. For instance, coskx _ 0 in H-1[0,2_] as k --* oc.

The possibility of convergence of numerical approximations of A in a weak sense is not a purely theoretical

possibility, eithcr; an example of this phenomenon in optimal control is discussed in [4]. Nevertheless, wc

can still use the weak form of the adjoint problem to obtain meaningful approximations of F'(a).

4.1. The convergence of the discrete adjolnt approach. The discrcte adjoint problem is one

practical instance of the abstract approached outlined in the preceding section. Furthermore, the discretc

adjoint problem is consistent with the discretized forward problem.

For this discussion we assume that wc are approximating the forward problem (and its linearization) by a

Galerkin finite element method. Extension to the more general Petrov-Galerkin methods is straightforward.

Let {¢h,..., ch} be the basis for the finite element space U h, where N -- g(h). We assume that the

linearized operator L -- S,_ is a map L : H TM --* H k, k > 0, and that f_ is bounded on H m. That is, U : H k,

U' = H -k, V : H TM, and V' : H -m. The case k < 0 can bc handled along the lines wc discuss here, but

requires a slightly different argument. For brevity we omit this discussion.

From the discussion in §2.4, we know that we can approximate A (in H -k norm) by functionals of the

form

v>= / Ah(x)v(x),

where th(x) C L 2. In particular, we can approximate A by functionals t h of this form for which Ah(x) 6 uh:

N

_(_):_ __,¢,(z).
i=l

If we do so, then (3.7) becomes

N N N

(4.3) EE "/ :
i:Ij=1 i:]

The standard matrix associated with the finite element method has appeared. Let

a,] = / Ch(x)L¢_(x).



ThenthematrixA = (a_j) is the stiffness matrix from the finite element method. If wc define

L = (_1_,---,_)T

_h = (Wl_, ', w_)T

L = (<s_,_1>, ,<s2,_.>)T

we can rewrite (4.3) as

(4.4)

If (4.4) is to hold for all w h, we must have

(4.5)

)_hTAwh - T :h_fu W ,

AT )_h : L"

This we recognize as the discrete adjoint, where we take the transpose (in the usual sense of linear algebra)

of the linearized forward equation. This is the system that would result if we were to treat the finite element

basis coefficients as the state variables in the optimization problem at level h.

The discrete adjoint is thus consistent with both the finite-dimensional discretized problem and thc

infinite-dimensional problem. However, we stress that this latter consistency is in the sense of convergence

as linear functionals. If A can be represented as the solution of a differential equation, there is no guarantee

that the finite-dimensional transpose of the scheme for the solution of the linearized forward problem will

be consistent (in the usual sense of finite-difference and finite element methods) with the adjoint differential

equation.

This stronger sense of consistency is known not to hold in general; [16] gives a counterexample. There

the authors examine upwind differencing and show how transposition of the discretization of the linearized

forward problem yields a numerical scheme for the adjoint problem that does not necessarily inherit either

the consistency or order of accuracy (in the usual sense of finite-differcncc schemes) of the finite-difference

scheme for the linearized forward problem. Given the correspondence of upwind differencing and the lowest-

order discontinuous Galerkin methods [7] one may be able to adapt this counterexample to the finite element

setting as well.

The example in [16] is not at odds with our discussion. We are interested in consistency (i.e., convergence)

of Ah and )_ in the sense of linear functionals. As we have discussed, this may be weaker than the convergence

of Ah to A as functions (e.g., pointwisc convergence or convergence in L_). It is this latter sense of consistency

that is discussed in [16].

4.2. Consequences for the calculation of sensitivities. In this section we discuss the consequences

of the preceding analysis for the calculation of F'(a). From (3.10) we have

F'(a) - F_(a) = (fo - f:) × 1 + S: (A - A") + (So - S2)×Ah.

Since IIT× ]l -- II T II for any bounded linear operator T,

IIg'(_)- FA(_)H_ IIs_- s211+ IIsa I111J,- >,hII+ IIs_- $2IIII>,'_It.

Estimates on 11_- _h II and II _h II then apply as part of the bound on the error in approximating F'(a).

However, the approximation of Fr(a) also depends on how well we approximate f_ and S_, so the approxi-

mation of ), may be only part of the story of approximating F'(a).

10



Also note that the error A - Ah appears in the term Sax (A - Ah) in F'(a) - F_(a), and

<s: (:,- _h), .>= <__ _ so_>= <j_- Jr, L-'so_>

Only the error in A restricted to the range R = SaX C V plays a role in the approximation of F'(a). A

bound on II A- Ah ]l would consider the error over all of V. It might be possible to use this observation

suggests it to obtain sharper estimates on the error F'(a) -F_ (a) in certain situations (say, if L-1R were to

consist of very smooth functions).

5. Illustration. We close our discussion with the following illustrative example. Let f_ bc the square

{ (xl,x2) t - 1 < xl, x2 < 1 } and consider the problem

(5.1) -At ----a in 12
u = 0 on Oft.

The design variable is a = a(x). The objectives wc consider are convex quadratic functions of a, so the

optimization problems are trivial. However, these objective serve to illustrate the points wc wish to make

about computing the costatc and derivative of the objective.

Since (5.1) is linear in u, the linearization L -- S_ has the same form: Lw = v is given by

(5.2) --Aw = v in f_
w = 0 on OFt.

We also have Sa_? = -_ or S_ = -I.

We will approximate A using the discrete adjoint approach, as discussed in 4.1. Applying piecewisc linear

elements to (5.1) and (5.2) and assuming a reasonable mesh, we have the estimate

and a similar estimate for w, W h.

The first objective we consider is

where ¢ is a datum wc wish to match.

Consequently, we expect A 6 L 2.

We have

from which we obtain

F(a) = 5 (u-¢)_,

We will assume that a 6 L2; then u E H 2 and S,L : H 2 --, L 2.

<j_,w- w_>= £ (_- _)(w - mh)

I<s., _-_"> I< llu-¢ ll.lf w-_ _1[_.< ch'li _ tl..

Observe that convergence of W h to w in L 2 suffices and we do not need convergence in H 1 or H 2.

Meanwhile, assuming ¢ 6 U h for simplicity, we have

<s_- s_, _h>= [ (_ - u_)_,
J_

SO

11



From these estimates and (4.2) we arrive at

l[_- _h11.-<ch_

We obtained this result via a general argument using the weak form of the adjoint problem. We could

also have arrived at this estimate by deriving the adjoint problem explicitly and examining its solutions. On

the other hand, the objective

1 j2F(a) = _ IVu(0)

is more easily handled by the weak form of the adjoint problem. Objectives of this sort arise when trying to

match data measured only at points.

In this case wc assume a E C 2 (_). Then u E H 4 and F(a) is defined. Continuing with picccwise linear

finite elements, for any _ • (0, 1) wc havc [15] for some C_ depending on _,

[]Vu- w, h ]l_=-<c_h_II_ rtL®

IIWo - Vw" li_=<--c_h_IIv ll_=-<c_ _Itv II,-.•

Taking carc to keep x = 0 interior to an element, we have

I(Io- J:, w/l= [(w(01- vu_(0/)Tw(0/[
< c [[Vu - w _ ]JL_IIw Jl,,_< cob_ila II_ II_ il_

and

1<f_,w - w_>l= Ivu(0)T (vw(0)- Vw_(0))[

l]Vu )lL_]lVw- Vwh IIL_<_G, ,_h_]1v HH,"

From these bounds and (4.2) we arrive at

II_- _ I1,-.-<c.h'.

This holds despite the fact that ), is not even in L2: formally,

A=0

in £t

on 0_2.

We can write )_ in terms of the fundamental solution for the Laplacian:

1 (0_(0)0_, + o_,_(0)0_)log[ _ I+_(_),
(5.3) )_(x) =

where r is smooth. The singular leading term is not in L2; one can check that A • H-1 \ L 2.

Finally, we can estimate the error in F_(a). Note that fa = 0 and Sa = sha = --I, so

Since F_(a) = )t _ C 2 wc cannot take (5.3) as defining a gradient or descent direction for the optimization

problem. One would need to compute a direction of steepest descent with respect to a suitable norm as

discussed in §2.3; see [10] for a further discussion of this point.
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6. Conclusion. We have discussed some of the important analytical and computational issues in nu-

merical approaches to the adjoint problem with an emphasis on the systematic approach to the adjoint

problem via its weak form and its numerical solution. In the process we have shown how solutions of the

discrete adjoint problem are suitably consistent with both the finite.dimensional and infinite-dimensional

optimization problems. From numerical approximations of F'(a) we can compute the directions of steepest

descent and quasi-Newton directions needed for nonlinear programming algorithms.

One topic that deserves closer attention is the case where the governing equations are solved using finite-

difference and finite-volume methods. These cases are of particular interest since they are most effective

when the state u is smooth (except possibly for well-defined loci of discontinuity). The smoother the class

of possible u the larger the class of possible cost functionals, and thus the broader the possibilities for )_ and

F'(a).

A relatcd question is the effect of numerical errors due to quadrature and other approximations. De-

pending on the locality of the interesting features of $, these errors (and other "variational crimes" discussed

in [17]) may be significant. The interpretation of some finite.difference and finite.volume methods in terms

of Galerkin and Petrov-Galerkin finite element schemes with particular quadrature rules may allow one to

relate results for finite elements to finite.difference and finite-volume methods (and vice vcrsa).

7. Acknowledgments. The author wishes to thank David Keyes for answering many questions con-

cerning finite element methods.
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